Advanced integrated enhanced vision systems
نویسندگان
چکیده
In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that “synthetic vision” is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; inertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.
منابع مشابه
Flight Test Comparison Between Enhanced Vision (FLIR) and Synthetic Vision Systems
Limited visibility and reduced situational awareness have been cited as predominant causal factors for both Controlled Flight Into Terrain (CFIT) and runway incursion accidents. NASA’s Synthetic Vision Systems (SVS) project is developing practical application technologies with the goal of eliminating low visibility conditions as a causal factor to civil aircraft accidents while replicating the ...
متن کاملLatency Requirements for Head-Worn Display S/EVS Applications
NASA’s Aviation Safety Program, Synthetic Vision Systems Project is conducting research in advanced flight deck concepts, such as Synthetic/Enhanced Vision Systems (S/EVS), for commercial and business aircraft. An emerging thrust in this activity is the development of spatially-integrated, large field-of-regard information display systems. Headworn or helmet-mounted display systems are being pr...
متن کاملFlight testing an integrated synthetic vision system
NASA’s Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affo...
متن کاملEnhanced/Synthetic Vision Systems: Human Factors Research and Implications for Future Systems
This paper reviews recent human factors research studies conducted in the Aerospace Human Factors Research Division at NASA Ames Research Center related to the development and usage of Enhanced or Synthetic Vision Systems. Research discussed includes studies of field of view (FOV), representational differences of infrared (IR) imagery, head-up display (HUD) symbology, HUD advanced concept desig...
متن کاملSoccer-Playing Robots for Advanced Control Course Teaching
This paper presents our experience in integrated advanced control teaching with a final year undergraduate course taught by the authors in recent years at the University of Girona in Spain. The experimental framework consists of two main components: the soccer-playing robots and computer vision and control systems. By practicing in the Laboratory of Intelligent Systems, the students will achi...
متن کامل